OMNI-Prop: Seamless Node Classification on Arbitrary Label Correlation

نویسندگان

  • Yuto Yamaguchi
  • Christos Faloutsos
  • Hiroyuki Kitagawa
چکیده

If we know most of Smith’s friends are from Boston, what can we say about the rest of Smith’s friends? In this paper, we focus on the node classification problem on networks, which is one of the most important topics in AI and Web communities. Our proposed algorithm which is referred to as OMNIProp has the following properties: (a) seamless and accurate; it works well on any label correlations (i.e., homophily, heterophily, and mixture of them) (b) fast; it is efficient and guaranteed to converge on arbitrary graphs (c) quasi-parameter free; it has just one well-interpretable parameter with heuristic default value of 1. We also prove the theoretical connections of our algorithm to the semi-supervised learning (SSL) algorithms and to random-walks. Experiments on four real, different network datasets demonstrate the benefits of the proposed algorithm, where OMNI-Prop outperforms the top competitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Localization of Mobile Robot using an Omni-Directional Camera

In this paper, we propose a method for global localization using an omni-directional camera. A robot position and angle are estimated by correlation coefficient between topological node-map images and input images. Near-node has the largest correlation coefficient in topological map images. The calculated correlation coefficient makes the mixtures of Gaussians density map. The highest value of ...

متن کامل

Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks

Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...

متن کامل

Seamless Distributed Computing from the Geometry of Interaction

In this paper we present a seamless approach to writing and compiling distributed code. By “seamless” we mean that the syntax and semantics of the distributed program remain the same as if it was executed on one node only, except for label annotations indicating on what node sub-terms of the program are to be executed. There are no restrictions on how node labels are to be assigned to sub-terms...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015